pp45494541.png
pp547ef271.png
BREAST IMAGING:
PROCEDURES:
SUB-SPECIALTIES:
pp012bb986.png
pp5f0faa89.png
ppa1545b92.png
ppf289f140.png
ppfbb2cfa9.png
pp1594dde1.png
ppe707c62e.png
ppb9f67cca.png
ppf1888d72.png
ppd9e6f0d7.png
ppcac8ea80.png
pp700b7238.png
Quality Care
Exceptional Service
ppb9ff52ab.png
ppa598845d.png
pp059d6648.png
pp1a5b56f9.png
pp6f6d6e95.png
ppfcc81b94.png
pp322d6bbe.png
ppaf56cf8d.png
ppa598845d.png
pp08b6a8de.png
ppe446835c.png
ppc2685487.png
pp7afc2b0f.png
ppa598845d.png
ppfcc81b94.png
pp602f3d1b.png
ppfcc81b94.png
ppa019207d.png
pp383c00e6.png
pp47fbdddb.png
ppf157b8a4.png
pp910558ec.png
ppe4086c62.png
pp910558ec.png
pp3df4401b.gif
ppd3c47b0c.png
©Diagnostic Radioligy, P.C. - 2013
Website by LAPDesigns
Omaha Imaging Office Phone #:  (402) 397-7100
Village Pointe Office Phone #:  (402)  502-7226
Billing Phone #:  (866) 477-7013
pp02bd16d2.png
pp02bd16d2.png
Omaha Imaging Location:  501 N. 87th Street, #100, Omaha, NE, 68114
Village Pointe Location:  302 N. 168th Circle, Suite 202, Omaha, NE  68118-4089
TextAnimationrev.2010-<wbr>Apr-<wbr>15.gif
MasterPagePhotos-<wbr>2012-<wbr>Oct-<wbr>25.gif
What is Ultrasound Imaging?
Ultrasound imaging, also called ultrasound scanning or sonography, involves exposing part of the body to high-frequency sound waves to produce pictures of the inside of the body. Ultrasound exams do not use ionizing radiation (as used in x-rays). Because ultrasound images are captured in real-time, they can show the structure and movement of the body's internal organs, as well as blood flowing through blood vessels.
Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions.
An abdominal ultrasound produces a picture of the organs and other structures in the upper abdomen.
A Doppler ultrasound study may be part of an ultrasound examination.
pp5b9a9142.jpg
Doppler ultrasound is a special ultrasound technique that evaluates blood as it flows through a blood vessel, including the body's major arteries and veins in the abdomen, arms, legs and neck.
What are some common uses of the procedure?
Ultrasound imaging is performed to evaluate the:
· kidneys
· liver
· gallbladder
· pancreas
· spleen
· abdominal aorta and other blood vessels of the abdomen
· tumors
· disorders in the urinary bladder
· ovaries
· uterus
· cervix
· fallopian tubes
· scrotum, testes and epididymis
· thyroid
Ultrasound is used to help diagnose a variety of conditions, such as:
· abdominal pains
· abnormal liver function
· enlarged abdominal organ
· stones in the gallbladder or kidney
· an aneurysm in the aorta
Additionally, ultrasound is used in guiding procedures such as needle biopsies in which needles are used to extract a sample of cells from organs for laboratory testing.
Doppler ultrasound images can help the physician to see and evaluate:
·
blockages to blood flow (such as clots)
·
narrowing of vessels (which may be caused by plaque)
·
tumors and congenital malformati\on
How should I prepare?
You should wear comfortable, loose-fitting clothing for your ultrasound exam. You will need to remove all clothing and jewelry in the area to be examined.
You may be asked to wear a gown during the exam or you may be allowed to wear your own clothing.
Tell your doctor if you have had a barium enema or a series of upper GI (gastrointestinal) tests within the past two days. Barium that remains in the intestines can interfere with the ultrasound test.
Other preparations depend on the type of ultrasound you are having.
· For a study of the liver, gallbladder, spleen, and pancreas, you may be asked to eat a fat-free meal on the evening before the test and then to avoid eating for eight to 12 hours before the test.
· For ultrasound of the kidneys, you may be asked to drink four to six glasses of liquid about an hour before the test to fill your bladder. You may be asked to avoid eating for eight to 12 hours before the test to avoid gas buildup in the intestines.
· For ultrasound of the aorta, you may need to avoid eating for eight to 12 hours before the test.
What does the equipment look like?
Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a transducer that is used to scan the body and blood vessels. The transducer is a small hand-held device that resembles a microphone, attached to the scanner by a cord. The transducer sends out high frequency sound waves into the body and then listens for the returning echoes from the tissues in the body. The principles are similar to sonar used by boats and submarines.
The ultrasound image is immediately visible on a nearby screen that looks much like a computer or television monitor. The image is created based on the amplitude (strength), frequency and time it takes for the sound signal to return from the patient to the transducer.
How does the procedure work?
Ultrasound imaging is based on the same principles involved in the sonar used by bats, ships and fishermen. When a sound wave strikes an object, it bounces back, or echoes. By measuring these echo waves it is possible to determine how far away the object is and its size, shape, and consistency (whether the object is solid, filled with fluid, or both).
In medicine, ultrasound is used to detect changes in appearance of organs, tissues, and vessels or detect abnormal masses, such as tumors.
In an ultrasound examination, a transducer both sends the sound waves and records the echoing waves. When the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves into the body. As the sound waves bounce off of internal organs, fluids and tissues, the sensitive microphone in the transducer records tiny changes in the sound's pitch and direction. These signature waves are instantly measured and displayed by a computer, which in turn creates a real-time picture on the monitor. One or more frames of the moving pictures are typically captured as still images.
Doppler ultrasound, a special application of ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of blood cells causes a change in pitch of the reflected sound waves (called the Doppler effect). A computer collects and processes the sounds and creates graphs or color pictures that represent the flow of blood through the blood vessels.
How is the procedure performed?
For most ultrasound exams, the patient is positioned lying face-up on an examination table that can be tilted or moved.
A clear gel is applied to the area of the body being studied to help the transducer make secure contact with the body and eliminate air pockets between the transducer and the skin. The sonographer (ultrasound technologist) or radiologist then presses the transducer firmly against the skin and sweeps it back and forth over the area of interest.
Doppler sonography is performed using the same transducer.
When the examination is complete, the patient may be asked to dress and wait while the ultrasound images are reviewed. However, the sonographer or radiologist is often able to review the ultrasound images in real-time as they are acquired and the patient can be released immediately.
This ultrasound examination is usually completed within 30 minutes.
What will I experience during and after the procedure?
Most ultrasound examinations are painless, fast and easy.
After you are positioned on the examination table, the radiologist or sonographer will apply some warm gel on your skin and then place the transducer firmly against your body, moving it back and forth over the area of interest until the desired images are captured. There is usually no discomfort from pressure as the transducer is pressed against the area being examined.
If scanning is performed over an area of tenderness, you may feel pressure or minor pain from the transducer.
If a Doppler ultrasound study is performed, you may actually hear pulse-like sounds that change in pitch as the blood flow is monitored and measured.
Once the imaging is complete, the gel will be wiped off your skin.
After an ultrasound exam, you should be able to resume your normal activities.
Who interprets the results and how do I get them?
A radiologist, a physician specifically trained to supervise and interpret radiology examinations, will analyze the images and send a signed report to your primary care or referring physician, who will share the results with you. In some cases the radiologist may discuss results with you at the conclusion of your examination.
What are the benefits vs. risks?
Benefits
· Most ultrasound scanning is noninvasive (no needles or injections) and is usually painless.
· Ultrasound is widely available, easy-to-use and less expensive than other imaging methods.
· Ultrasound imaging uses no ionizing radiation.
· Ultrasound scanning gives a clear picture of soft tissues that do not show up well on x-ray images.
· Ultrasound causes no health problems and may be repeated as often as is necessary.
· Ultrasound provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as cortisone injections, needle biopsies and needle aspiration of fluid in joints or elsewhere.
Risks
· For standard diagnostic ultrasound there are no known harmful effects on humans.
What are the limitations Ultrasound Imaging?
Ultrasound waves are disrupted by air or gas; therefore ultrasound is not an ideal imaging technique for the bowel or organs obscured by the bowel. In most cases, barium exams, CT scanning, and MRI are the methods of choice in this setting.
Ultrasound waves do not pass through air; therefore an evaluation of the stomach, small intestine and large intestine may be limited. Intestinal gas may also prevent visualization of deeper structures such as the pancreas and aorta. Large patients are more difficult to image because tissue attenuates (weakens) the sound waves as they pass deeper into the body.
Information above is adopted from RadiologyInfo from the American College of Radiology and the Radiological Society of North America websites (www.rsna.org, www.acr.org).

Ultrasound